Novel Diastereoselective Synthesis of Bicyclic $\boldsymbol{\beta}$-Lactams through
 Radical Cyclization and Their Reduction toward 2-(1-Alkoxy-2-hydroxyethyl)piperidines and 2-(1-Alkoxy-2-hydroxyethyl)azepanes

Erika Leemans, ${ }^{\dagger}$ Matthias D'hooghe, ${ }^{\dagger}$ Yves Dejaegher, ${ }^{\dagger}$ Karl W. Törnroos, ${ }^{\dagger}$ and Norbert De Kimpe*, ${ }^{\text {t }}$
Department of Organic Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium, and Department of Chemistry, University of Bergen, Allégt. 41, 5007 Bergen, Norway
norbert.dekimpe@UGent.be

Received October 22, 2007

1-Allyl- and 1-(3-phenylallyl)-substituted 4-(2-bromo-1,1-dimethylethyl)azetidin-2-ones were transformed into 3-substituted 7-alkoxy-5,5-dimethyl-1-azabicyclo[4.2.0]octane-8-ones through radical cyclization by means of n-tributyltin hydride and AIBN in toluene with excellent diastereocontrol ($\geq 99 \%$). The radical cyclization of 4-(2-bromo-1,1-dimethylethyl)-1-(2-methylallyl)azetidin-2-ones afforded 8-alkoxy-3,6,6-trimethyl-1-azabicyclo[5.2.0]nonan-9-ones in good diastereomeric excess (75-78\%). The reductive ring opening of 1 -azabicyclo[4.2.0]octane-8-ones and 1-azabicyclo[5.2.0]nonan-9-ones with lithium aluminum hydride resulted in novel 2-(1-alkoxy-2-hydroxyethyl)piperidines and -azepanes, which were isolated as single isomers.

Introduction

The extensive use of (β-lactam) antibiotics in the last decades has resulted in the rapid emergence of bacterial resistance and the development of multi-drug-resistant strains. ${ }^{1}$ Hence, the search for novel types of bioactive β-lactams has become one of the major challenges in medicinal and pharmaceutical chemistry. The majority of biologically active β-lactams comprises a bicyclic framework bearing the nitrogen atom at the bridgehead. In this way, the lactam functionality has less planarity and resonance stability, favoring nucleophilic attack

[^0]and consecutive ring opening. ${ }^{2}$ Besides their biological relevance, azetidin-2-ones have acquired a prominent place in organic synthesis as building blocks due to their inherent reactivity, which has led to the introduction of the term " β lactam synthon method" in 1997. ${ }^{3}$

In recent years, more and more efforts have been devoted to the development of new radical cyclization processes, especially in the field of natural product synthesis. ${ }^{4}$ Several attractive features of radical chemistry can account for this interest, such

[^1]as the ability to form new $\mathrm{C}-\mathrm{C}$ bonds (even at congested sites), functional group tolerance, and high regioselectivity. An important strategy in this respect comprises the formation of $\mathrm{C}-\mathrm{C}$ bonds through intramolecular endo- or exo-cyclization of carbon radicals onto alkene moieties. ${ }^{5}$ In the literature, several interesting syntheses of bicyclic β-lactams have been reported based on this approach. 1-Azabicyclo[3.2.0]heptan-7-ones and 5-oxa-1-azabicyclo[4.2.0]octan-8-ones have been prepared in good yields by radical annulations of monocyclic β-lactams bearing appropriate appendages by means of tributyltin hydride and azoisobutyronitrile in benzene. ${ }^{6}$ An analogous approach with tributyltin hydride and azoisobutyronitrile has been reported for the synthesis of a 3-methylene-1-azabicyclo[5.2.0]non-4-en-9one. ${ }^{7}$ Furthermore, the 6 -endo-trig cyclization of an N -allyl-7-bromo-3a-methylhexahydroindolinone system has been described under high dilution conditions with tributyltin hydride and a catalytic amount of AIBN toward a tricyclic γ-lactam, whereas also 5-exo-trig cyclization was observed as a minor reaction pathway if the radical reaction was executed with only tributyltin hydride and no AIBN. ${ }^{8}$

In continuation of our interest in the synthesis of novel bicyclic β-lactams, ${ }^{9}$ an efficient and straightforward radical approach toward 1 -azabicyclo[4.2.0]octan-8-ones and 1-aza-bicyclo[5.2.0]nonan-9-ones with excellent diastereocontrol is described in the present paper. The bicyclic azetidin-2-ones obtained in this work were subsequently transformed into functionalized 2-(1-alkoxy-2-hydroxyethyl)piperidine and -azepane derivatives as single diastereomers via a reductive ring opening. Besides the frequent occurrence of azaheterocyclic systems in bioactive compounds, 2-(1-alkoxy-2-hydroxyethyl)piperidines and -azepanes are of general importance in medicinal chemistry due to the presence of a 1,2,3-triheteroatom-substituted submoiety, ${ }^{10}$ and analogous compounds have been described as cardiovascular agents. ${ }^{11}$ Furthermore, 2-(1,2-dihydroxyethyl)piperidine has been used as an intermediate in the synthesis of pipecolic acid (a component of several secondary metabolites in plants and fungi ${ }^{12}$), as a precursor of nonribosomal peptides with novel pharmacological activities, ${ }^{13}$ and as a key structural component in the synthesis of the NMDA receptor antagonists etoxadrol 1 and dexoxadrol 2 (Figure 1). ${ }^{14,15}$
(4) (a) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237. (b) Majumdar, K. C.; Basu, P. K.; Chattopadhyay, S. K. Tetrahedron 2007, 63, 793.
(5) Zhang, W. Tetrahedron 2001, 57, 7237.
(6) (a) Bachi, M. D.; Hoornaert, C. Tetrahedron Lett. 1981, 22, 2689. (b) Alcaide, B.; Benito, J. L.; Rodriguez-Campos, I. M.; Rodriguez-Lopez, J.; Rodriguez-Vicente, A.; Sierra, M. A.; Garcia-Granda, S.; GutierrezRodriguez, A. Tetrahedron: Asymmetry 1995, 6, 1055. (c) Lee, E.; Kim, S. K.; Kim, J. Y.; Lim, J. Tetrahedron Lett. 2000, 41, 5915.
(7) Alcaide, B.; Almendros, P.; Aragoncillo, C.; Redondo, M. C. J. Org. Chem. 2007, 72, 1604.
(8) Padwa, A.; Rashatasakhon, P.; Ozdemir, A. D.; Willis, J. J. Org. Chem. 2005, 70, 519.
(9) Van Brabandt, W.; Vanwalleghem, M.; D'hooghe, M.; De Kimpe, N. J. Org. Chem. 2006, 71, 7083.
(10) (a) Narimatsu, S.; Arai, T.; Watanabe, T.; Masubuchi, Y.; Horie, T.; Suzuki, T.; Ishikawa, T.; Tsutsui, M.; Kumagai, Y.; Cho, A. K. Chem. Res. Toxicol. 1997, 10, 289. (b) Bair, K. W.; Tuttle, R. L.; Knick, V. C.; Cory, M.; McKee, D. D. J. Med. Chem. 1990, 33, 2385. (c) Bair, K. W.; Andrews, C. W.; Tuttle, R. L.; Knick, V. C.; Cory, M.; McKee, D. D. J. Med. Chem. 1991, 34, 1983.
(11) Shanklin, J. R., Jr.; Johnson, C. P. Eur. Pat. Appl. 1988, EP 279707 A2; Chem. Abstr. 1988, 109, 230821.
(12) Fernández-García, C.; McKervey, M. A. Tetrahedron: Asymmetry 1995, 6, 2905.
(13) Naranjo, L.; Martin de Valmaseda, E.; Bañuelos, O.; Lopez, P.; Riaño, J.; Casqueiro, J.; Martin, J. F. J. Bacteriol. 2001, 183, 7165.

1
etoxadrol

dexoxadrol

Figure 1.

Results and Discussion

N-Allyl- β-bromoimine $\mathbf{4 a}$ was prepared in good yield via imination of 3-bromo-2,2-dimethylpropanal 3 in diethyl ether at room temperature utilizing 1 equiv of allylamine in the presence of MgSO_{4} (Scheme 1). ${ }^{16}$ Accordingly, N-(3-phenyla-llyl)- β-bromoimine 4b and N-(2-methyl-2-propenyl) β-bromoimine $\mathbf{4 c}$ were prepared in excellent yields via imination of 3-bromo-2,2-dimethylpropanal $\mathbf{3}$ in the presence of MgSO_{4} and $\mathrm{Et}_{3} \mathrm{~N}$ utilizing 1 equiv of the corresponding allylammonium bromide (Scheme 1), which were prepared from the corresponding allylic bromides using a 7 N solution of ammonia in methanol under high pressure. ${ }^{17}$ 3-Bromo-2,2-dimethylpropanal 3 was obtained via oxidation of 3-bromo-2,2-dimethyl-1propanol with pyridinium chlorochromate, mixed with silica, in dichloromethane in 75% yield. ${ }^{16}$

Subsequently, the obtained imines 4 were used as substrates for a Staudinger reaction with different ketenes toward the corresponding β-lactams. Thus, treatment of N-allylimine 4a and N-(3-phenylallyl)imine $\mathbf{4 b}$ with 1.3 equiv of methoxy-, phenoxy-, or benzyloxyacetyl chloride in the presence of triethylamine in dichloromethane afforded 1-allyl-4-(2-bromo-1,1-dimethylethyl)azetidin-2-ones 5a-c and 1-(3-phenylallyl)-4-(2-bromo-1,1-dimethylethyl)azetidin-2-ones 5d-f in 63-90\% yield (Scheme 2, Table 1). ${ }^{18}$

An important issue in the Staudinger synthesis of β-lactams involves the diastereocontrol. The stereochemical outcome of the Staudinger reaction toward azetidin-2-ones 5 was shown to be cis based on the coupling constants between the protons at C 3 and C 4 in ${ }^{1} \mathrm{H}$ NMR $(5.2-5.5 \mathrm{~Hz}) .{ }^{19}$ The cis/trans stereoselectivity is dependent on the competition between ring closure and isomerization of the imino moiety in the zwitterionic intermediate. Electron-donating ketene substituents and electronwithdrawing imine substituents lead to a preference for $c i s-\beta$ lactam formation, ${ }^{20}$ although different experimental factors such as the solvent, the base, the temperature, and the chloride anion could affect the stereochemical outcome. ${ }^{21}$

The synthesis of the targeted bicyclic azetidin-2-ones $\mathbf{6}$ was accomplished via the unprecedented intramolecular ring closure of 4-(2-bromo-1,1-dimethylethyl)azetidinones 5 through a radicalar reaction triggered by the organotin reagent tributyltin

[^2]
SCHEME 1

SCHEME 2

TABLE 1. Synthesis of cis-1-(2-Alkenyl)azetidin-2-ones 5 under Staudinger Conditions

entry	R^{1}	R^{2}	compd	yield (\%) a
1	Me	H	$\mathbf{5 a}$	90
2	Ph	H	$\mathbf{5 b}$	76
3	Bn	H	$\mathbf{5 c}$	90
4	Me	Ph	$\mathbf{5 d}$	63
5	Ph	Ph	$\mathbf{5 e}$	73
6	Bn	Ph	$\mathbf{5 f}$	78

${ }^{a}$ Yields after purification by column chromatography.
hydride. ${ }^{22,23}$ Treatment of 1-allylazetidin-2-ones 5a-c and 1-(3-phenylallyl)azetidin-2-ones $\mathbf{5 d}-\mathbf{f}$ with 1.5 equiv of tributyltin hydride and 0.7 equiv of azoisobutyronitrile (AIBN) in refluxing toluene afforded bicyclic 7-alkoxy-5,5-dimethyl-1-azabicyclo-[4.2.0]octane-8-ones $\mathbf{6}$ for the first time as single diastereomers in $28-37 \%$ yield after purification by means of column chromatography or recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ (Scheme 3, Table 2). ${ }^{24}$ Besides bicyclic compounds $\mathbf{6}$, the corresponding monocyclic 4 -(tert-butyl)- β-lactams 7 were also formed in substantial amounts (sometimes $>50 \%$), explaining the lower yields of the bicycles 6 . After purification by means of column chromatography, 4 -(tert-butyl)- β-lactams 7 were isolated in $6-11 \%$ yield (Scheme 3, Table 2). The low material balance of this radical reaction is mainly due to decomposition of the 4-(tert-butyl)-β-lactams 7 during the chromatographic purification on silica gel. The use of triethylborane as a radical initiator at -78 or $0{ }^{\circ} \mathrm{C}$ in tetrahydrofuran was unsuccessful and the starting materials were recovered. ${ }^{25}$

When the radical cyclization of a chloro derivative, cis-1-allyl-4-(2-chloro-1,1-dimethylethyl)-3-phenoxyazetidin-2-one 8 , was evaluated applying the same reaction conditions, the reaction could not be driven to completion, resulting in the formation of the contemplated bicyclic compound $\mathbf{6 b}$ besides the presence of monocyclic 4 -(tert-butyl)- β-lactam 7b and unreacted starting material 8 in a $36 / 58 / 6$ ratio (Scheme 4). Therefore, preference was given to the use of 4-(2-bromo-1,1-

[^3]dimethylethyl)azetidin-2-ones $\mathbf{5}$ as substrates for the radical cyclization toward bicyclic β-lactams 6, as in these cases no starting material was recovered afterward. β-Lactam 8 was synthesized using the same reaction conditions as described for the preparation of 4-(2-bromo-1,1-dimethylethyl)azetidin-2-ones 5 (Scheme 2). ${ }^{18}$

The above-described method led to the formation of carbacephams 6 as the sole bicyclic products via radical cyclization of the methyl radical $\mathbf{9}$, derived from the corresponding bromo compound 5 through the action of $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$. Although both 6 -exo-trig and 7 -endo-trig are favored according to the Baldwin rules, ${ }^{26}$ only the 6 -exo-trig product was obtained after cyclization giving rise to intermediates 10 (Scheme 5). When R^{2} is a phenyl group, the radical in intermediate $\mathbf{1 0 b}$ is located at a benzylic position, favoring the 6 -exo-trig step. Also for R^{2} $=\mathrm{H}$, the formation of a six-membered ring via a primary radical intermediate 10a is preferred over the formation of a sevenmembered ring via a more stable secondary radical intermediate 11. Since the yields with $R^{2}=H$ are similar to those with R^{2} $=\mathrm{Ph}$, the transition state must be quite early and the cyclization is controlled by the best alignment of the orbitals involved, which appears to be better for a 6 -exo-trig than for a 7 -endotrig cyclization.

Besides the observed regioselectivity, the merit of this radical cyclization approach comprises the stereoselective synthesis of functionalized 1 -azabicyclo[4.2.0]octan-2-ones 6 as single diastereomers bearing three stereogenic centers. The relative stereochemistry at positions 6 and 7 is a direct result from the diastereoselective Staudinger reaction affording cis- β-lactams 5. During the subsequent radical cyclization step, the preformed geometry of the azetidin-2-one ring accounts for the observed stereoselectivity. Several attempts were performed in order to elucidate the relative configuration at C-3 with respect to the 7-alkoxy group. Nuclear Overhauser effect (NOE) experiments were unsuccessful due to proton overlap, making selective irradiation impossible. Fortunately, X-ray analysis of the bicyclic azetidin-2-one 6b revealed that the methyl substituent at C3 accommodates a pseudoequatorial position at the six-membered ring, which is folded in a chairlike conformation (see the Supporting Information). Thus, it could be derived that the C-3 substituents and the 7 -alkoxy group in compounds $\mathbf{6}$ are in a trans-disposition.

The observed relative stereochemistry can be explained considering the transition states involved in the radical cyclization process (Scheme 6). On the basis of a 3D-model, the transition states TTS 1 and TTS 2 are disfavored because of spacial interaction (electronic repulsion) between the methylene radical and one of the electron pairs of oxygen of the alkoxy substituent. In transition states TTS 3 and TTS 4, however,

[^4]
SCHEME 3

$1)$. Treatment of this β-bromoimine $\mathbf{4 c}$ with an alkoxy- or phenoxyacetyl chloride in dichloromethane in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ furnished cis-1-(2-methylallyl)azetidin-2-ones $\mathbf{1 2}$ in 71$90 \%$ yield (Scheme 7, Table 3).

When these novel brominated azetidinones $\mathbf{1 2}$ were reacted with 1.5 equiv of tributyltin hydride and 0.7 equiv of azoisobutyronitrile (AIBN) in refluxing toluene, novel bicyclic azetidinones $\mathbf{1 3}$ were obtained as a mixture of stereoisomers through intramolecular cyclization (Scheme 8, Table 4). After purification by means of column chromatography or recrystallization from $\mathrm{Et}_{2} \mathrm{O}$, the mixtures of 3,6,6-trimethyl-1-azabicyclo[5.2.0]-nonane-9-ones trans-13 (major) and cis-13 (minor) were isolated in $16-21 \%$ yield. All attempts to separate the diastereomers from each other failed. Also in this approach, the formation of monocyclic 4-tert-butyl- β-lactams $\mathbf{1 4}$ as side products in yields of $7-11 \%$ was observed.

In contrast with the synthesis of 1-azabicyclo[4.2.0]octan-8ones 6, a seven-membered ring is fused to the β-lactam ring in compounds $\mathbf{1 3}$ instead of a six-membered ring. These results indicate that the radical cyclization of 1-(2-methylallyl)substituted β-lactams 12 proceeds through a 7 -endo-trig cyclization protocol via a stable intermediate tertiary radical 17 (Scheme 9). Steric hindrance at the 6-exo-trig cyclization center is probably the main factor orienting the cyclization to a 7 -endotrig selectivity in the case of bicyclic β-lactams $\mathbf{1 3}$. On the basis of the rationalization discussed in Scheme 5, it can also be assumed that a similar favorable transition state is involved,
the radical center and the alkoxy group are oriented away from each other. In TTS 3, the double bond is pointed pseudoaxial, resulting in a considerable steric hindrance with the lactam moiety. On the other hand, the pseudoequatorial position of the double bond in TTS 4 minimizes the latter steric repulsion. On the basis of these arguments, the diastereoselective formation of azabicycles 6 can be explained via the most favorable transition state TTS 4, resulting in the observed stereochemistry.

Next, the influence of a substituent at the 2^{\prime}-position of the N-allyl group was examined. For this purpose, 4-(2-bromo-1,1-dimethylethyl)-1-(2-methylallyl)azetidin-2-ones $\mathbf{1 2}$ were synthesized under Staudinger reaction conditions. The starting N -(3-bromo-2,2-dimethylpropylidene)-2-methylallylamine $4 \mathbf{c}$ was prepared via condensation of 3-bromo-2,2-dimethylpropanal 3 with the hydrobromide salt from 2-methylallylamine (Scheme

SCHEME 4

SCHEME 5

SCHEME 6

TTS 3

SCHEME 7

TABLE 3. Synthesis of cis-1-(2-Methyl-2-propenyl)azetidin-2-ones 12

entry	R	compd	${\text { yield }(\%)^{a}}^{1}$
2	Me	$\mathbf{1 2 a}$	90
3	Ph	$\mathbf{1 2 b}$	76
	Bn	$\mathbf{1 2 c}$	71

${ }^{a}$ Yields after purification by column chromatography.

TABLE 4. Synthesis of Bicyclic $\boldsymbol{\beta}$-Lactams 13

entry	R	compd	ratio a trans-13:cis-13 2	${\text { yield }(\%)^{b}}^{\text {c }}$	compd	yield (\%) ${ }^{b}$
1	Me	13a	$87: 13$	20	$\mathbf{1 4 a}$	10
2	Ph	13b	$89: 11$	21	$\mathbf{1 4 b}$	11
3	Bn	13c	$88: 12$	16	$\mathbf{1 4 c}$	7

${ }^{a}$ Ratio determined by means of ${ }^{1} \mathrm{H}$ NMR. ${ }^{b}$ Yields after purification by column chromatography or recrystallization from $\mathrm{Et}_{2} \mathrm{O}$.
affording 3-methyl-1-azabicyclo[5.2.0]nonan-9-ones trans-13 as the major stereoisomers ($87-89 \%$). Since this transition state comprises a puckered seven-membered ring, the stereoselectivity is less pronounced as compared to the synthesis of the corresponding 1 -azabicyclo[4.2.0]octan-8-ones 6, explaining the formation of compounds cis-13 as minor constituents (11$13 \%$).

The second objective of this research was the stereoselective synthesis of 2-(1-alkoxy-2-hydroxyethyl)piperidines and 2-(1-alkoxy-2-hydroxyethyl)azepanes via reductive ring opening of the corresponding bicyclic precursors. 7-Alkoxy-1-azabicyclo-

[4.2.0] octane-8-ones 6 were reduced by means of 2 equiv of lithium aluminum hydride in ether, affording 2-(1-alkoxy-2hydroxyethyl)piperidines $\mathbf{1 8}$ in good yields after 16 h at reflux (Scheme 10, Table 5). Only two similar compounds have been reported to date, i.e., 2-(2-hydroxy-1-phenoxyethyl)-7-methyl-6-oxa-3,7-diazabicyclo[3.2.1] octane and 2-(1-benzyloxy-2-hy-droxyethyl)-7-methyl-6-oxa-3,7-diazabicyclo[3.2.1]octane, in which the proton CHOPh of the former was described as a quadruplet at 4.35 ppm and the $\mathrm{CH}_{2} \mathrm{OH}$ protons as two times a $\mathrm{d} \times \mathrm{d}$ at 3.81 and $4.07 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right.$ NMR, $\left.\mathrm{CDCl}_{3}\right) .{ }^{27,28}$ The chemical shifts obtained for piperidines $\mathbf{1 8}$ were comparable to those mentioned in the literature.

In an analogous reaction, the reduction of 8-alkoxy-3,6,6-trimethyl-1-azabicyclo[5.2.0]nonane-9-ones $\mathbf{1 3}$ (as mixtures of trans and cis isomers) with lithium aluminum hydride was evaluated. Treatment of the latter bicycles $\mathbf{1 3}$ with 2 equiv of LiAlH_{4} in diethyl ether afforded the corresponding 2-(1-alkoxy-2-hydroxyethyl)azepanes 19, again as mixtures of trans and cis isomers. After purification by column chromatography on silica gel, the major compounds trans-2-(1-alkoxy-2-hydroxyethyl)azepanes 19 were isolated as single stereoisomers (Scheme 11, Table 6). In literature, no precedents of the analogous azepanes 19 have been reported.

In summary, the radical cyclization of 1-allyl-4-(2-bromo-1,1-dimethylethyl)azetidin-2-ones and 1-(3-phenylallyl)-4-(2-bromo-1,1-dimethylethyl)azetidin-2-ones by means of n-tributyltin hydride and AIBN has been described for the first time as an elegant approach toward the synthesis of 3-substituted 7 -alkoxy-5,5-dimethyl-1-azabicyclo[4.2.0]octane-8-ones with excellent diastereocontrol. The relative configuration of the latter compounds was determined by using X-ray analysis. On the other hand, the radical cyclization of 4-(2-bromo-1,1-dimeth-ylethyl)-1-(2-methylallyl)azetidin-2-ones furnished 8 -alkoxy-3,6,6-trimethyl-1-azabicyclo[5.2.0]nonan-9-ones in good but lower diastereomeric excess (75-78\%). Finally, 1-azabicyclo-[4.2.0]octane-8-ones and 1-azabicyclo[5.2.0]nonan-9-ones were subjected to an efficient reductive ring opening with lithium

SCHEME 8

1426 J. Org. Chem., Vol. 73, No. 4, 2008

SCHEME 9

SCHEME 10

TABLE 5. Synthesis of Piperidines 18 via Reductive Ring Opening of Bicyclic $\boldsymbol{\beta}$-Lactams 6

entry	R^{1}	R^{2}	compd	yield (\%) a
1	Me	H	$\mathbf{1 8 a}$	72
2	Ph	H	$\mathbf{1 8 b}$	78
3	Bn	H	$\mathbf{1 8 c}$	82
4	Me	Ph	$\mathbf{1 8 d}$	81
5	Bn	Ph	$\mathbf{1 8 e}$	76

${ }^{a}$ Yields after purification by column chromatography or recrystallization.

TABLE 6. Synthesis of Azepanes 19 via Reductive Ring Opening of Bicyclic $\boldsymbol{\beta}$-Lactams 13

entry	R	compd	${\text { yield }(\%)^{a}}^{2}$trans $\mathbf{- 1 9 a}$ 81 2 Me trans $\mathbf{- 1 9 b}$ 83 3 Ph trans $\mathbf{- 1 9 c}$ 79 ${ }^{a}$ Yields after purification by column chromatography.

aluminum hydride toward novel 2-(1-alkoxy-2-hydroxyethyl)piperidines and 2-(1-alkoxy-2-hydroxyethyl)azepanes, which were isolated as single isomers.

Experimental Section

Synthesis of 4-(2-Bromo-1,1-dimethylethyl)azetidin-2-ones 5 and 12. As a representative example, the synthesis of cis-4-(2-bromo-1,1-dimethylethyl)-3-phenoxy-1-(2-methylallyl)azetidin-2one $\mathbf{1 2 b}$ is described here. To a stirred, ice-cooled solution of imine $4 \mathbf{c}(1.50 \mathrm{~g}, 6.88 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.09 \mathrm{~g}, 21.65 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ was added phenoxyacetyl chloride. After being stirred for

15 h at room temperature, the reaction mixture was poured into water (50 mL) under vigorous stirring and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to furnish cis-1-allyl-4-(2-broom-1,1-dimethylethyl)-3-phenoxyazetidin-2-one 12b, which was purified by column chromatography on silica gel (petroleum ether/EtOAc 3/1).
cis-4-(2-Bromo-1,1-dimethylethyl)-3-phenoxy-1-(2-methylal-lyl)azetidin-2-one 12b. Yellow oil. Yield 76\%. $R_{f} 0.48$ (petroleum ether/EtOAc 3/1). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.24(6 \mathrm{H}, \mathrm{s}), 1.74$ $(3 \mathrm{H}, \mathrm{s}), 3.41(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 3.64(1 \mathrm{H}, \mathrm{d}, J=15.3 \mathrm{~Hz}), 3.69$ $(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 4.00(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}), 4.16(1 \mathrm{H}, \mathrm{d}, J=$ $15.3 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{s}), 4.99(1 \mathrm{H}, \mathrm{s}), 5.31(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz})$, 6.97-7.33 (5H, m). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.3\left(\mathrm{CH}_{3}\right)$, $22.8\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{CH}_{3}\right), 37.3(\mathrm{C}), 43.7\left(\mathrm{CH}_{2}\right), 48.4\left(\mathrm{CH}_{2}\right), 64.1$ $(\mathrm{CH}), 81.5(\mathrm{CH}), 114.8\left(\mathrm{CH}_{2}\right), 116.1(\mathrm{CH}), 122.5(\mathrm{CH}), 129.6(\mathrm{CH})$, $139.2(\mathrm{CH}), 157.7(\mathrm{C}), 167.7(\mathrm{C}) . \mathrm{IR}\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) v_{\max }$ 1597, 1760, 2971, 3501. MS m/z (\%) 352/4 ($\left.\mathrm{M}^{+}+\mathrm{H}, 100\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrNO}_{2}$: C, 57.96; H, 6.29; N, 3.98. Found: C, 58.33; H, 6.11 ; N, 3.75 .

Synthesis of 5,5-Dimethyl-1-azabicyclo[4.2.0]octan-8-ones 6 and 3,6,6-Trimethyl-1-azabicyclo[5.2.0]nonan-9-ones 13. As a representative example, the synthesis of 3-benzyl-7-methoxy-5,5-dimethyl-1-azabicyclo[4.2.0]octan-8-one $\mathbf{6 d}$ is described here. $n-\mathrm{Bu}_{3} \mathrm{SnH}(1.37 \mathrm{~mL}, 5.11 \mathrm{mmol})$ and AIBN $(0.39 \mathrm{~g}, 2.38 \mathrm{mmol})$ were added to a refluxing solution of cis-4-(2-bromo-1,1-dimeth-ylethyl)-3-phenoxy-1-(3-phenylallyl)azetidine-2-one 5d (1.20 g, 3.41 mmol) in toluene (10 mL) in 3 portions, the interval between each addition being 1 h . Afterward, the reaction mixture was stirred for an additional 8 h at reflux temperature. After cooling to room temperature, an aqueous sodium hydroxide solution $(20 \mathrm{~mL}, 2 \mathrm{~N})$ was added to the resulting mixture, followed by a period of stirring of 1 h at room temperature. The suspension was then filtered over Celite, and the organic phase was separated and washed with a sodium hydroxide solution $(10 \mathrm{~mL}, 2 \mathrm{~N})$ and with brine. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, and the crude reaction product was obtained after filtration and evaporation of the solvent. The tin hydroxides were removed by column chromatography on silica gel (hexane/EtOAc 3/1), yielding pure 3-benzyl-7-methoxy-5,5-dim-ethyl-1-azabicyclo[4.2.0]octan-8-one $\mathbf{6 d}$.

SCHEME 11

3-Benzyl-7-methoxy-5,5-dimethyl-1-azabicyclo[4.2.0]octan-8one 6d. Yellow crystals. Yield 35\%. $R_{f} 0.14$ (hexane/EtOAc 3/1). Mp 102.3-103.3 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.01(3 \mathrm{H}, \mathrm{s})$, $1.02(3 \mathrm{H}, \mathrm{s}), 1.01-1.09(1 \mathrm{H}, \mathrm{m}), 1.45(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=13.5,2.2$ $\mathrm{Hz}), 1.99-2.14(1 \mathrm{H}, \mathrm{m}), 2.28(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=13.1,11.3,1.7$ $\mathrm{Hz}), 2.44(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=13.6,6.7 \mathrm{~Hz}), 2.50(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=$ $13.6,7.7 \mathrm{~Hz}), 3.10(1 \mathrm{H}, \mathrm{d}, J=4.8 \mathrm{~Hz}), 3.49(1 \mathrm{H}, \mathrm{s}), 3.75(1 \mathrm{H}, \mathrm{d}$ $\times \mathrm{d}, J=13.1,4.8 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=4.8,1.7 \mathrm{~Hz}), 7.09-$ $7.31(5 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 20.1\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right)$, $32.7(\mathrm{CH}), 33.1(\mathrm{C}), 41.0\left(\mathrm{CH}_{2}\right), 42.5\left(\mathrm{CH}_{2}\right), 46.1\left(\mathrm{CH}_{2}\right), 59.3$ $\left(\mathrm{CH}_{3}\right), 61.5(\mathrm{CH}), 85.5(\mathrm{CH}), 126.3(\mathrm{CH}), 128.5(\mathrm{CH}), 128.9(\mathrm{CH})$, 138.9 (C), 166.3 (C). IR (KBr, cm^{-1}) $\nu_{\text {max }} 1736$, 2981. MS m/z (\%) $274\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}$: C, 74.69 ; H, 8.48; N, 5.12. Found: C, 73.57; H, 8.20; N, 4.93.
trans-3,6,6-Trimethyl-8-phenoxy-1-azabicyclo[5.2.0]nonan-9one trans-13b (signals derived from the mixture of trans-13b and cis-13b). White crystals. $R_{f} 0.12$ (hexane/EtOAc 3/1). ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.03(3 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 1.07(3 \mathrm{H}, \mathrm{s}), 1.15$ $(3 \mathrm{H}, \mathrm{s}), 1.18-1.67$ and $1.72-1.83(4 \mathrm{H}, \mathrm{m}), 2.11-2.22(1 \mathrm{H}, \mathrm{m})$, $3.24(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=13.5,4.7 \mathrm{~Hz}), 3.57(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=13.5,3.9$ $\mathrm{Hz}), 3.77(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}), 5.24(1 \mathrm{H}, \mathrm{d}, J=4.7 \mathrm{~Hz}), 6.97-$ $7.33(5 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.2\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right)$, $26.8\left(\mathrm{CH}_{3}\right), 30.4(\mathrm{CH}), 30.6\left(\mathrm{CH}_{2}\right), 36.6(\mathrm{C}), 40.4\left(\mathrm{CH}_{2}\right), 48.4$ $\left(\mathrm{CH}_{2}\right), 66.9(\mathrm{CH}), 81.6(\mathrm{CH}), 115.9(\mathrm{CH}), 122.0(\mathrm{CH}), 129.5(\mathrm{CH})$, 158.1 (C), $167.0(\mathrm{C}) . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \nu_{\max } 1739,2917 . \mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%) $274\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$.

Synthesis of 2-(1-Alkoxy-2-hydroxyethyl)piperidines 18 and 2-(1-Alkoxy-2-hydroxyethyl)azepanes 19. As a representative example, the synthesis of 2-(1-phenoxy-2-hydroxyethyl)-3,3,5trimethylpiperidine 18b is described here. To a stirred, ice-cooled solution of 7-phenoxy-3,5,5-trimethyl-1-azabicyclo[4.2.0]octan-8one $\mathbf{6 b}(0.20 \mathrm{~g}, 0.77 \mathrm{mmol})$ in diethyl ether $(15 \mathrm{~mL})$ was added lithium aluminum hydride $(0.06 \mathrm{~g}, 1.54 \mathrm{mmol})$ in small portions, and the resulting mixture was stirred at room temperature for 16 h . Afterward, water was added dropwise at $0{ }^{\circ} \mathrm{C}$ until all residual lithium aluminum hydride was consumed completely. The resulting suspension was filtered over Celite, and the aqueous layer was extracted with diethyl ether $(2 \times 20 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered and crude 2-(1-phenoxy-

[^5]2-hydroxyethyl)-3,3,5-trimethylpiperidine 18b was obtained after removal of the solvent in vacuo, which was purified by recrystallization from $\mathrm{Et}_{2} \mathrm{O}$.

2-(1-Phenoxy-2-hydroxyethyl)-3,3,5-trimethylpiperidine 18b. Colorless crystals. Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$. Yield 78%. Mp $139.0-139.4^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta 0.79(3 \mathrm{H}, \mathrm{d}, J=$ $6.6 \mathrm{~Hz}), 0.93(3 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{s}), 1.03(1 \mathrm{H}, \mathrm{t}, J=13.1 \mathrm{~Hz}), 1.46$ $(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=13.1,3.3,2.2 \mathrm{~Hz}), 1.61-1.74(1 \mathrm{H}, \mathrm{m}), 2.21$ $(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=13.5,11.6 \mathrm{~Hz}), 2.69\left(1 \mathrm{H}, \mathrm{s}_{\mathrm{br}}\right), 3.09(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times$ d, $J=13.5,4.3,2.2 \mathrm{~Hz}), 3.81(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=11.6,1.7 \mathrm{~Hz}), 4.07$ $(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=11.6,2.4 \mathrm{~Hz}), 4.48\left(1 \mathrm{H}, \mathrm{s}_{\mathrm{br}}\right), 6.80-7.31(5 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.3\left(\mathrm{CH}_{3}\right), 21.0\left(\mathrm{CH}_{3}\right), 28.5(\mathrm{CH})$, $29.5\left(\mathrm{CH}_{3}\right), 33.1(\mathrm{C}), 49.9\left(\mathrm{CH}_{2}\right), 53.5\left(\mathrm{CH}_{2}\right), 65.9\left(\mathrm{CH}_{2}\right), 67.5$ $(\mathrm{CH}), 72.7(\mathrm{CH}), 116.2(\mathrm{CH}), 121.2(\mathrm{CH}), 129.6(\mathrm{CH}), 156.8(\mathrm{C})$. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) \nu_{\max } 1242,1494,1598,2948,3294$. MS m/z (\%) $264\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{2}$: C, 72.96 ; H , 9.57; N, 5.32. Found: C, 72.76; H, 9.84; N, 5.18.

2-(2-Hydroxy-1-methoxyethyl)-3,3,6-trimethylazepane 19a. Colorless oil. Yield 81%. $R_{f} 0.26\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 17 / 3\right) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 0.81(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}), 0.91(3 \mathrm{H}, \mathrm{s}), 0.92$ $(3 \mathrm{H}, \mathrm{s}), 1.20-1.29(1 \mathrm{H}, \mathrm{m}), 1.44-1.48(2 \mathrm{H}, \mathrm{m}), 1.54-1.64(2 \mathrm{H}$, m), $2.23(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=14.2,11.3 \mathrm{~Hz}), 2.57\left(1 \mathrm{H}, \mathrm{s}_{\mathrm{br}}\right), 3.16(1 \mathrm{H}$, $\left.\mathrm{S}_{\text {br }}\right), 3.17(1 \mathrm{H}, \mathrm{d} \times \mathrm{d} \times \mathrm{d}, J=14.2,5.1,1.7 \mathrm{~Hz}), 3.35(3 \mathrm{H}, \mathrm{s}), 3.62$ $(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=11.4,1.7 \mathrm{~Hz}), 4.10(1 \mathrm{H}, \mathrm{d} \times \mathrm{d}, J=11.4,3.0 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta 19.8\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 28.7\left(\mathrm{CH}_{3}\right)$, $30.1\left(\mathrm{CH}_{2}\right), 38.5(\mathrm{C}), 38.7(\mathrm{CH}), 41.2\left(\mathrm{CH}_{2}\right), 55.9\left(\mathrm{CH}_{3}\right), 57.8$ $\left(\mathrm{CH}_{2}\right), 64.5\left(\mathrm{CH}_{2}\right), 70.4(\mathrm{CH}), 77.3(\mathrm{CH}) . \mathrm{IR}\left(\mathrm{NaCl}, \mathrm{cm}^{-1}\right) \nu_{\text {max }}$ 1463, 2920, 2944, 3350. MS m/z (\%) 216 ($\mathrm{M}^{+}+\mathrm{H}, 100$).

Acknowledgment. The authors are indebted to the "Fund for Scientific Research-Flanders (Belgium)" (FWO-Vlaanderen) and to Ghent University (GOA) for financial support.

Supporting Information Available: Spectroscopic data of compounds 5b,e, 6a-c,e,f, 10c, 11a,c, 15a,c-e, and 16b,c and crystallographic data for $\mathbf{6 b}$. This material is available free of charge via the Internet at http://pubs.acs.org.

JO702263P

[^0]: \dagger Ghent University.

 * University of Bergen.
 (1) Fisher, J. F.; Meroueh, S. O.; Mobashery, S. Chem. Rev. 2005, 105, 395.

[^1]: (2) Sweet, R. M. In Cephalosporines and Penicillins, Chemistry and Biology; Flynn E. H., Ed.; Academic Press: New York, 1972; p 280.
 (3) (a) Ojima, I. Acc. Chem. Res. 1995, 28, 383. (b) Ojima, I.; Delaloge, F. Chem. Soc. Rev. 1997, 377. (c) Singh, G. S. Tetrahedron 2003, 59, 7631. (d) France, S.; Weatherwax, A.; Taggi, A. E.; Lectka, T. Acc. Chem. Res. 2004, 37, 592.

[^2]: (14) Thurkauf, A.; Mattson, M. V.; Huguenin, P. N.; Rice, K. C.; Jacobson, A. E. FEBS Lett. 1988, 238, 369.
 (15) Sax, M.; Ebert, K.; Schepmann, D.; Wibbeling, B.; Wünsch, B. Bioorg. Med. Chem. 2006, 14, 5955.
 (16) (a) Corey, E. J.; Suggs, J. W. Tetrahedron Lett. 1975, 31, 2647. (b) Sulmon, P.; De Kimpe, N.; Verhé, R.; De Buyck, L.; Schamp, N. Synthesis 1986, 192.
 (17) Saulnier, M. G.; Zimmermann, K.; Struzynski, C. P.; Sang, X.; Velaparthi, U.; Wittman, M.; Frennesson, D. B. Tetrahedron Lett. 2004, 45, 397.
 (18) Dejaegher, Y.; De Kimpe, N. J. Org. Chem. 2004, 69, 5974.
 (19) (a) Barrow, K. D.; Spotswood, T. M. Tetrahedron Lett. 1965, 37, 3325. (b) Decazes, J.; Luche, J. L.; Kagan, H. B. Tetrahedron Lett. 1970, 11, 3365.
 (20) Jiao, L.; Liang, Y.; Xu, J. J. Am. Chem. Soc. 2006, 128, 6060.
 (21) Li, B.; Wang, Y.; Du, D.-M.; Xu, J. J. Org. Chem. 2007, 72, 990.

[^3]: (22) (a) Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, Germany, 2001; Vol. 1. (b) Davis, A. G. J. Chem. Res. 2006, 3, 141.
 (23) Parsons, A. F. An introduction to free radical chemistry; Blackwell Science Ltd: Oxford, UK, 2000; Vol. 1.
 (24) Van Brabandt, W.; Dejaegher, Y.; De Kimpe, N. Pure Appl. Chem. 2005, 77, 2061.
 (25) (a) Nozaki, K.; Oshima, K.; Utimoto, K. J. Am. Chem. Soc. 1987, 109, 2547. (b) Miura, K.; Ichinose, Y.; Nozaki, K.; Fugami, K.; Oshima, K.; Utimoto, K. Bull. Chem. Soc. Jpn. 1989, 62, 143.

[^4]: (26) (a) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734. (b) Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.; Thomas, R. C. J. Chem. Soc., Chem. Commun. 1976, 736. (c) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 738. (d) Baldwin, J. E.; Kruse, L. I. J. Chem. Soc., Chem. Commun. 1977, 233.

[^5]: (27) Alcaide, B.; Sáez, E. Eur. J. Org. Chem. 2005, 1680.
 (28) Alcaide, B.; Pardo, C.; Sáez, E. Synlett 2002, 85.

